Improving Accuracy of Low-resource ASR using Rule-Based Character Constituency Loss (RBCCL)

January 2025



Abstract

Modern general-purpose speech recognition systems are more robust in languages with high resources. However, achieving state-of-the-art accuracy for low-resource languages is still challenging. To deal with this challenge, one of the popular practice is fine-tuning the pre-trained model on low-resource settings. Nevertheless, pre-trained or fine-tuned model fails to capture the complex character and word constituency in the Devanagari script transcription. We proposed a complementary loss function designed to force the model to learn the character constituency of Devanagari script. Our complementary loss function, called as Rule-Based Character Constituency Loss (RBCCL), that penalizes incorrect transcriptions and updates the overall loss during the model training phase. This loss function can be combined with CTC loss or cross-entropy loss as well which are widely used in ASR training. Our experiment shows that combining the existing cross-entropy loss with new complementary loss (RBCCL) improves the Word Error Rate (WER ), reducing it from 47.1% to 23.41% which is quite promising result.


Keywords

NLP AI Deep Learning